

Informatica

Scienza

Come la matematica, l'astronomia, la chimica...

Si basa sul metodo sperimentale: Osservo - faccio ipotesi - verifico

Informatica

Informazione + Automatica = Informatica

Studia come rappresentare, elaborare e trasmettere le informazioni

Cos'è l'informatica

	1955	2 1 17 11 1 1
RAPPRESENTARE	CODICI	SUPPORTI
ELABORARE	ALGORITMI	CALCOLATORI
TRASMETTERE	PROTOCOLLI	RETI

STRUMENT

Rappresentare

Associare simboli a concetti astratti o oggetti concreti

Elaborare

Trasformare le informazioni mediante un procedimento noto

Trasmettere

Spostare l'informazione da un luogo ad un altro

Codice

Sequenza di simboli che è associata ad una informazione

Algoritmo

Procedimento mediante il quale vengono elaborate le informazioni

Protocollo

Regole che devono essere rispettate per poter trasmettere le informazioni

Attività

Esperimento

Creiamo un codice per le lettere dell'alfabeto

Utilizziamo solo due simboli (sistema binario)

Otteniamo un codice per scambiare messaggi

Osservazioni

Lunghezza dei codici

Difficoltà di decifrare il messaggio

Utilizzo di separatori (nuovo simbolo, non è più binario!)

Codificare

Cosa serve per codificare

Alfabeto

Regole

Che caratteristiche deve avere un codice?

Deve essere univoco

Uno stesso codice non può rappresentare due informazioni diverse esempi: nickname, posta elettronica, numero di telefono

Deve essere decifrabile

Devo poter sempre risalire all'informazione partendo dal codice

Codificare (da wikipedia)

In communications and information processing,

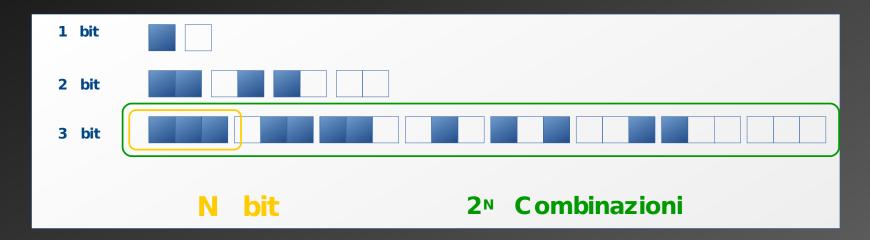
code is a system of rules to convert information—such as a letter, word, sound, image, or gesture—into another form or representation, sometimes shortened or secret, for communication through a channel or storage in a medium.

An early example is the invention of language, which enabled a person, through speech, to communicate what he or she saw, heard, felt, or thought to others.

But speech limits the range of communication to the distance a voice can carry, and limits the audience to those present when the speech is uttered.

The invention of writing, which converted spoken language into visual symbols, extended the range of communication across space and time

La rappresentazione dell'informazione: il concetto di Bit


Bit: unità di misura elementare per la rappresentazione dell'informazione

Livello logico

Il bit non ha una dimensione fisica, esprime la "lunghezza" dell'informazione

Livello fisico

Per poter memorizzare i dati su un supporto bisogna trovare il modo per poterli scrivere. È il supporto ad avere una dimensione

la rappresentazione dell'informazione: il concetto di Bit

Per assegnare in modo univoco (cioè senza Esempio ripetizioni) un codice ad N oggetti devo usare un numero di bit che mi permetta di di combinazioni ottenere un numero maggiore o uguale agli oggetti che voglio rappresentare.

Per codificare le 26 lettere dell'alfabeto devo usare almeno 5 bit perché

$$2^4 = 16 < 26$$

$$2^5 = 32 > 26$$

Esempio

A 00000

B 00001

C 00010

D 00011

....

La rappresentazione dell'informazione: il concetto di Bit

Esempio

Una volta codificate le lettere dell'alfabeto, posso comporre parole utilizzando i codici di ogni singola lettera

BACCA = 000010000000010000100000

Importante

Avendo utilizzato un numero fisso di bit per ogni lettera, riesco a capire il codice perché considero le sequenze di 1 e 0 a gruppi di 5. Se la codifica non utilizza un numero fisso di bit possono insorgere delle ambiguità. Ad esempio se

A 0

B 1

C 01

La sequenza 0110 può significare sia ABBA che CBA

Codificare

Codifica binaria

Perché il pc "conosce" solo ON/OFF cioè PASSA-CORRENTE/NON-PASSA-CORRENTE

Importante per

Capire il formato dei file

Per aprire un file, il programma deve sapere com'è fatto e cosa "significano" i bit!

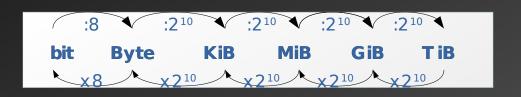
Dal bit al monitor

Per visualizzare un colore devo trovare un modo per rappresentarlo

Caratteri, colori, suoni

ASCII, RGB, MIDI

Equivalenze nel sistema binario

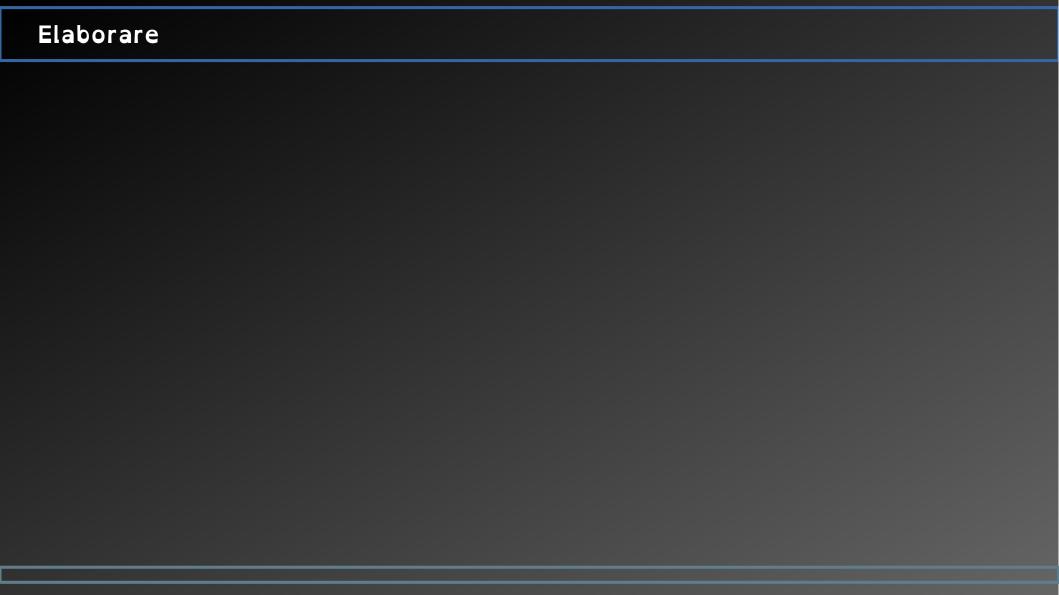

Multipli e sottomultipli

Attenzione: si usano le potenze del 2 (210) e non del 10 (103), ma le regole di conversione sono le stesse:

da sottomultiplo a multiplo: divido

da multiplo a sottomultiplo: moltiplico

Multipli del byte					
F	Prefissi SI	l	Prefissi binari		
Nome	Simbolo	Multiplo	Nome	Simbolo	Multiplo
kilobyte	kB	10 ³	kibibyte	KiB	210
megabyte	MB	10 ⁶	mebibyte	MiB	2 ²⁰
gigabyte	GB	10 ⁹	gibibyte	GiB	230
terabyte	ТВ	10 ¹²	tebibyte	TiB	2 ⁴⁰
petabyte	РВ	10 ¹⁵	pebibyte	PiB	2 ⁵⁰
exabyte	EB	10 ¹⁸	exbibyte	EiB	260
zettabyte	ZB	10 ²¹	zebibyte	ZiB	2 ⁷⁰
yottabyte	YB	10 ²⁴	yobibyte	YiB	2 ⁸⁰


Occupazione di memoria per testi, immagini e suoni

Esempi vari

Nei testi si codificano i caratteri

Nelle immagini si codificano i colori

Nei suoni si codifica

Esempio Preparazione di un piatto

La ricetta è scritta su un foglio di carta

Leggo una frase

Prendo gli ingredienti che mi servono

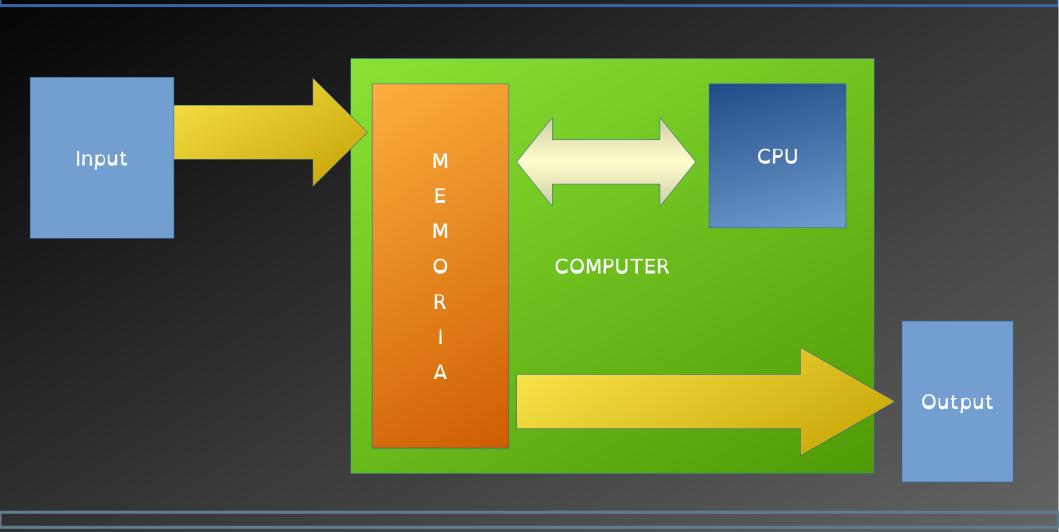
Eseguo le operazioni indicate dalla ricetta utilizzando gli strumenti opportuni

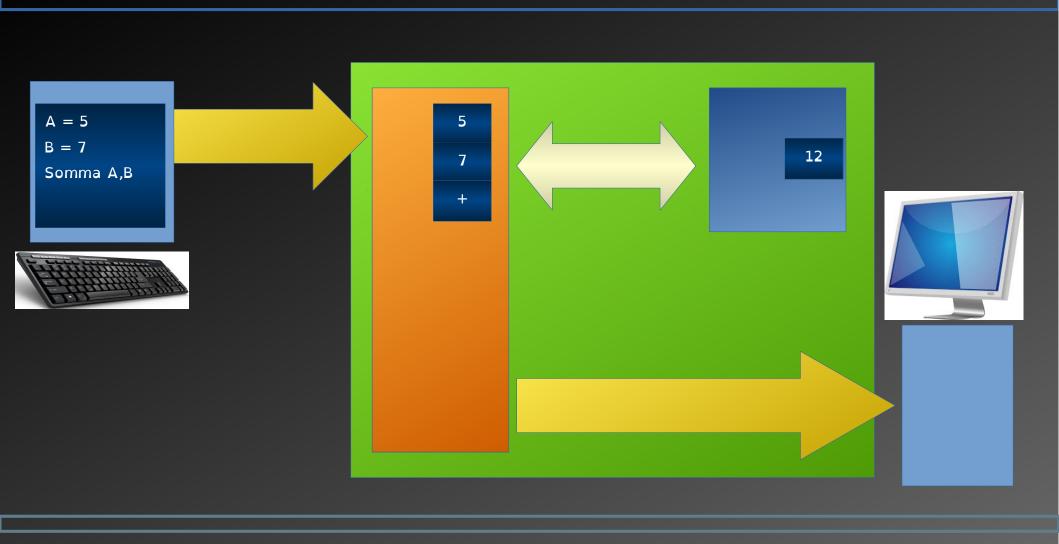
La ricetta è scritta su un foglio di carta

Leggo una frase

Prendo gli ingredienti che mi servono

Eseguo le operazioni indicate dalla ricetta utilizzando gli strumenti opportuni

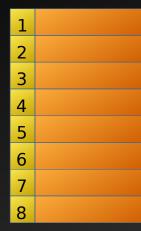

In maniera <u>estremamente semplificata</u> possiamo dire che un computer è costituito da due elementi:


- 1)Una memoria che contiene i dati e le istruzioni (entrambi codificati in codice binario)
- 2)Un processore che esegue le operazioni

Il processore legge i dati e le istruzioni contenute nella memoria ed esegue le operazioni necessarie per portarle a termine

Esempio

- 1.A = 5
- 2.B = 7
- 3.Somma A e B
- 4. Visualizza il risultato sul monitor



La memoria di un computer si divide in due categorie:

- Memoria centrale
 - Contiene i dati e le istruzioni che vengono elaborati dalla CPU
- Memoria di massa
 - Serve per archiviare i dati e i programmi

Introduzione all'architettura del calcolatore: Memoria Centrale (o RAM)

Piccole

Se comparate alle memorie di massa

Veloci

Dovendo fornire i dati direttamente alla CPU, si devono utilizzare dispositivi che trasferiscono i dati ad una velocità abbastanza elevata.

Volatili

Una volta interrotta l'alimentazione elettrica i dati in essa memorizzati vengono persi

Introduzione all'architettura del calcolatore: Memorie di massa

Grandi

Comparate con le possono ospitare una

Lente

Non dovendo fornire trasferiscono i dati scambio di dati fra la Al

Persistenti

Una volta interrotta ma sono nuovamente

molto più capienti, cioè

utilizzare dispositivi che a quella utilizzata nello

rizzati non vengono persi vamente alimentato

Introduzione all'architettura del calcolatore: Il processore

UNITÀ DI CONTROLLO (CU)

Coordina le attività dei dispositivi

ALU

Effettua le operazioni matematiche e logiche

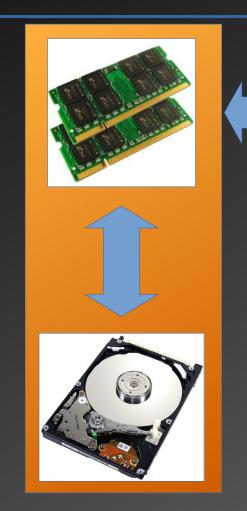
REGISTRI

Memorizzano le informazioni sui calcoli che il processore deve eseguire o ha eseguito

Introduzione all'architettura del calcolatore: Il processore

CONTATORE DI PROGRAMMA (PC)

Contiene il valore della casella da cui prelevare l'istruzione da eseguire


REGISTRO ISTRUZIONI (IR)

Contiene l'istruzione che il processore deve eseguire

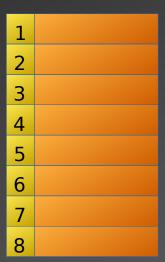
R0, R1, RIS


Memorizzano i valori dei dati da elaborare e il loro risultato

L'elaborazione delle informazioni (I)

1	
2	
3	
4	
5	
6	
7	
8	

L'elaborazione delle informazioni (II)


Per poter eseguire un programma, è necessario codificare istruzioni da comunicare al computer.

Una volta creato, per poter essere eseguito, il programma deve essere caricato nella memoria centrale.

Quando un programma si trova nella RAM, il processore riesce ad eseguirlo, ripetendo le seguenti azioni:

- 1) Preleva dalla memoria l'istruzione indicata in PC e la copia in IR
- 2) La esegue
- 3) Aumenta di 1 il valore nel PC e ripete

Supponiamo di avere un computer che riconosca le seguenti istruzioni

SOMMA casella casella casella

INPUT casella

OUTPUT casella

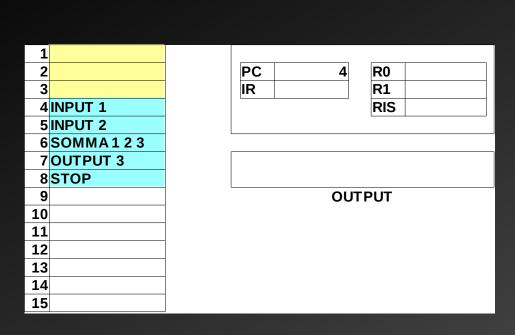
STOP

Le istruzioni hanno il seguente significato

SOMMA casella casella casella

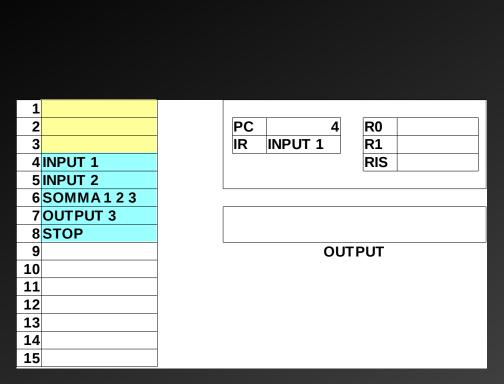
- Copia il valore della prima casella in R0
- · Copia il valore della seconda casella in R1
- Mette in RIS la somma di R0 e R1
- Copia nella terza casella il valore di RIS

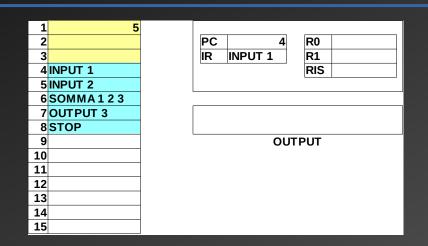
INPUT casella


Acquisisce un numero e lo mette nella casella indicata

OUTPUT casella

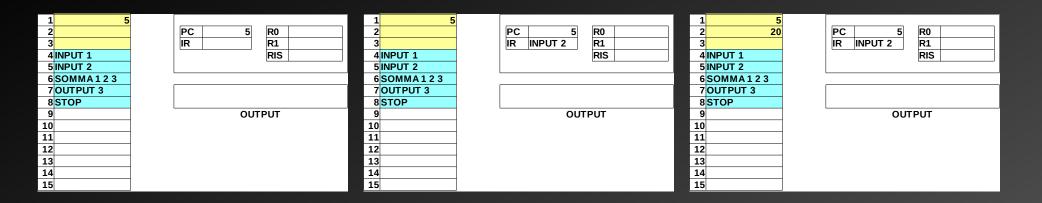
Visualizza il valore della casella indicata


STOP

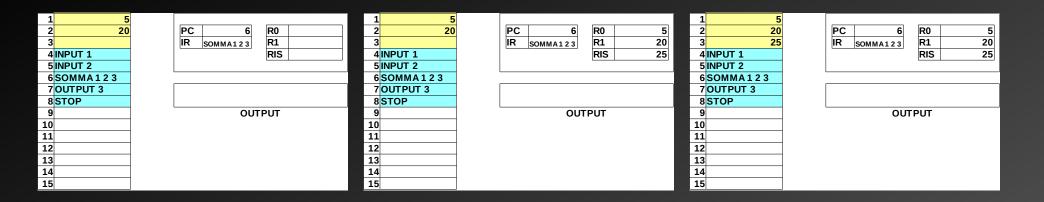

Termina l'esecuzione del programma

Consideriamo il programma caricato in memoria e vediamo cosa succede quando viene eseguito dal computer.

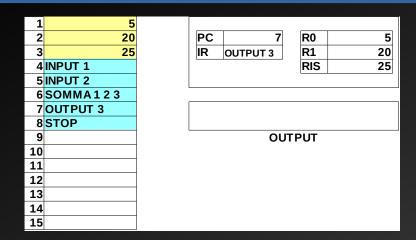
All'interno di PC si trova il valore 4, la CPU andrà quindi nella cella 4 e preleverà l'istruzione che sarà copiata in IR



Una volta "dentro" il processore, l'istruzione sarà eseguita.


In questo caso l'istruzione da eseguire indica che bisogna prendere un numero in input e metterlo nella cella 1

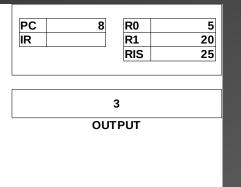
Successivamente, il PC viene aumentato di 1


nella cella 5

Viene prelevata l'istruzione Viene eseguita l'istruzione Successivamente si aumenta all'interno della CPU di 1 il valore di PC

nella cella 6

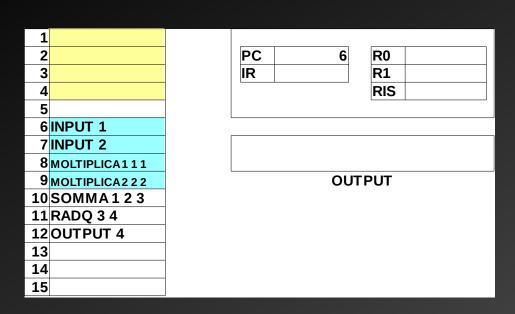
Viene prelevata l'istruzione Viene eseguita l'istruzione Successivamente si aumenta all'interno della CPU di 1 il valore di PC



Successivamente viene aumentato di 1 il PC In questo caso l'istruzione successiva è STOP e il programma si ferma

1	5			
2	20		PC	
3	25		IR	OUTPL
4	INPUT 1			
5	INPUT 2			
6	SOMMA123	,		
7	OUTPUT 3			
8	STOP			
9		,		
10				
11				
12				
13				
14				
15				

1	5				
2	20	PC	7	R0	5
3	25	IR	OUTPUT 3	R1	20
4	INPUT 1			RIS	25
5	INPUT 2				
6	SOMMA123				
7	OUTPUT 3			3	
8	STOP			3	
9			Ol	JTPUT	
10					
11					
12					
13					
14					
15					


1	5
2	20
3	25
4	INPUT 1
5	INPUT 2
6	SOMMA123
7	OUTPUT 3
8	STOP
9	
10	
11	
12	
13	
14	
15	

Esercizio

1		
2		PC
3		IR
4		
5	INPUT 1	
6	INPUT 2	
7	INPUT 4	
8	SOMMA123	
9	SOMMA343	
10	SOMMA333	
11	OUTPUT 3	
12		
13		
14		
15		

PC	5	R0	
IR		R1	
		RIS	
	OUT	PUT	
	001	. 0.	

MOLTIPLICA

Prende il valore contenuto nella prima casella

Prende il valore contenuto nella seconda casella

Calcola il risultato

Mette il risultato nella terza casella

RADQ

Prende il valore della prima casella

Calcola il risultato dell'operazione radice quadrata

Mette il risultato nella seconda casella